Cours Technique

Balloons for Science

2023

Vincent DUBOURG - DOA/BL

Introduction History
Scientific interest
Organization/ actors
CNES Balloons families
Balloon components
Envelope
Flight train
On board / ground system
Scientific payloads
Summary
-At the origin of the first flight of Man in the atmosphere, it kept its original simplicity: it moves only thanks to natural strengths

- The buoyancy force lifts it,
- The winds push it,
- The gravity gets it down.

A bit of history: The Balloon, a French invention !

Ccnes

ela premicre montyafícine des 3reives SWontyafier sans passagers
TVS

A bit of history: 1783, first scientific experiments

Montgolfiere:
Pilâtre de Rozier \& Marquis d’Arlandes

Hydrogene balloon:
J. Charles \& M.N. Robert

\&
Cnes

denes

Ces robian

A Bit of history: CNES Balloon activities

- 1958: Beginning of Scientific Balloon activities (J. Blamont, Service d'Aéronomie CNRS)
. July 1961: settlement of fabrication means (R. Regipa)
. 13/10/1961: 1st launch of a 3000 m 3 balloon (tetrahedral) from Trappes (78, near Paris)
- 1962:
- Launch campaign from the Kerguelen Islands

- Settlement of the Aire sur l'Adour (40) launch base
- First flights from Kiruna (Sweden)
- 12/09/1964: inauguration of the Aire sur l'Adour launch base

- 1965: Delegation of balloon activities to CNES
- 1968: Launch of a $100000 \mathrm{m3}$ zero pressure balloon (ZPB)
- 1982: Launch of a 1000000 m3 ZPB from Aire Ceiling reached: 47 km

Varied advantages

- Short development durations (some months to a few years vs. ~ 10-20 for a satellite project)
- Gondolas and equipment can be recovered and reused. The same equipment and instruments can fly twice in the same campaign
- Complementarity to aircraft, sounding rockets, and satellite missions (calibration of satellite instruments by in situ balloon measurements)
- Flexibility and simplicity of the launch operations: No specific spaceport is required > large diversity of launch sites, function of scientific requirements
- Few constraints on payloads:

They can be heavy, voluminous, there are no drastic requirements in terms of acceleration (vibrations, shocks) compared to launchers

- Moderate operational cost: a ZPB campaign costs ~ 1,5 M€

Balloons are good candidates to train new comers in space and for cooperation!

Scientific interest

Study of the atmosphere, its chemistry and its dynamics
■ Experiments fly in the site of measurements (sampling of air or measurement of constituents concentration)

- Meteorology and aeronomy: The balloon, pushed by the winds,
 helps to know the movement of the air masses

Astronomy

- Above the dense layers of the atmosphere, telescopes can observe radiations almost invisible from the ground

- infrared, ultraviolet
- X-rays and gamma rays

Interest of Balloons

Other fields

- Biology (study of the effects of the cosmic radiations on living cells)
- Geophysics (Earth underground layers, magnetic field)
- Technology:
* Calibration / validation of satellite equipment and instruments:

> ENVISAT, IASI, AEOLUS, Earth Care, tests of solar cells...

* Drop tests of re-entry objects: Aerostatic crane

ARD Shield, EXOMARS parachutes, HIDRON Canadian glider

- Telecom, Observation, Surveillance and Security

Credit: CSA-Hidron

Organization / Actors in France

CNES

Finances, develops and operates the French balloon systems for science and technology

Industry

Equipment and subsystems: HEMERIA (balloon envelopes, unique in Europe), ELTA, MICROTEC, ADENEO, EREMS, CROSSWAY (onboard systems), CS, CAP GEMINI (Ground segments)

French scientific partners: INSU/IN2P3/CNRS

Develop the scientific instruments and work on the data collected, Several laboratories are involved:
LPC2E, LMD, LATMOS, LERMA, GSMA, LAM, APC, LA, IRAP, DT INSU, CEA, ONERA, INSERM, LSCE, IMCCE...

New comers in the stratosphere

Thalès Alenia Space (Stratobus HAPS project)
Airbus developed the ZEPHYR drone, and participates in the Persistent balloon project with HEMERIA Zephalto: A startup to develop tourism in the stratosphere under a balloon

Organization / Actors abroad

Europe:

- SSC (Swedish Space Corporation): Operates Stratospheric balloons in Kiruna
- ASI, INAPS (Italie), SNSB (Suède), DLR, KIT, Universities of Heidelberg, Frankfort (Germany), Cambridge (GB): develop payloads, and/or use balloon data.

USA:

- Most important balloon activity in the World: NASA, scientific laboratories, RAVEN-AEROSTAR (envelopes and systems manuffacturing and operation), private companies (World View...)

Canada:

- CSA and scientific labs: Develop payloads, fly under CNES Balloons in the Canadian site of Timmins and elsewhere

Asia: Japan (JAXA-ISAS), India (NBF, Hyderabad), China, develop and operate balloons
Oceania: CSIRO and UNSW to access to Alice Springs launch base

\rightarrow Cooperations ongoing between CNES and almost all these actors:

En particular, the HEMERA european balloon infrastructure, lead by CNES
\rightarrow CNES Balloon activity is unique in Europe... comparable to the US one.
CNES's know-how is recognized all over the world!

Flight physics of balloons

No engine, no fuel: a reliable, simple and environmentally friendly vehicle
-Balloon structure is as simple as possible: just some gas in a bubble!

But how do balloons fly?

-The total-lift force FAT is defined as the buoyant force (cf. Archimedes) minus the weight of the gas:

$$
\text { FAT }=F_{A}-P_{G}=\left(\rho_{A} \times V \times g\right)-\left(\rho_{G} \times V \times g\right)=\left(\rho_{A}-\rho_{G}\right) \times V \times g
$$

=FAT is opposed to the weight of all the solid elements:

$$
\text { FAT } \longleftrightarrow \mathrm{P}
$$

-The free-lift force FAL is the FAT minus the weight of the solid elements:

$$
\text { FAL }=F A T-\Sigma P=\left[\left(\rho_{A} \times V\right)-\left(\rho_{G} \times V\right)\right] \times g-\Sigma P
$$

=If FAL > 0, then the balloon will take off!

$$
\left(\rho_{A} \cdot V-M_{G}-\Sigma M_{S}\right) \cdot g-\frac{1}{2} \cdot \rho_{A} \cdot S \cdot C_{x} \cdot\left(\frac{d z}{d t}\right)^{2}=\left(\rho_{G} \cdot V+\Sigma M_{s}+C_{F} \cdot \rho_{A} \cdot V\right) \cdot \frac{d^{2} z}{d t^{2}}
$$

Equation of the vertical movement

Flight physics of balloons Shape of the balloons at flight level

Closed Pressurised balloons - SPB, BLPB

FAL converted into Pressurization
Local stress: DeltaP xR/(2e) Film: Multitilayer, rigid

Open Zero pressure balloons - ZPB, MIR

FAL evacuated at float through exhaust sleeves
No circumferential effort
Film: Thin polyéthylène layer

The CNES Balloon line of products

Stratospheric balloons

Altitude Km
40

BLD Sounding balloon, MAGIC, ...
2 h ascent up to 25 to $\mathbf{3 5} \mathbf{~ k m}$ P/L: <=3 kg

Iropospheric balloons BLPB
1 month: 500 m to 3 km P/L: 3 kg

AEC AEroClipper
1 mois

NEW concept with HEMERIA:
Steerable balloon BALMAN (ref. Loon)

- Post STRATEOLE
- Observation, Defence
- Flight >=3 months
- P/L 20 kg
- Alt. ~20 km

SPB STRATEOLE 2, ... Flight >= 3 mois Alt. $\mathbf{1 8 - 2 0} \mathrm{km}$ P/L: 20 kg

3000 to 800000 m 3 Flight: Some hours to a few days
Alt.: $15-40 \mathrm{~km}$, Ceiling or slow descent P/L: Up to 1 Ton
\square

TtvS

$\longleftarrow \quad$ Auxiliary balloon
$\longleftarrow \quad$ Payloads

Le lien nominal et le lien redondant sont actifs lors des phases critiques.

TM/TC

Système NOSYCA

Various phases of a ZPB flight Mission requirements

- Aerostatic phases of a flight are highly variable:
- function of the kind of balloon
- function of the scientific requirements defined in a "flight profile" addressed to operational teams several months before launch

Scientific payloads

- Various scientific payloads, according to:
- The kind of measurement
- The flight mission requirements (duration, altitude, launch site)
- Instrument mass and size
- The balloon family capabilities (ZPB, SPB, etc.)
- Two major families for ZPB gondolas: pointed or not
- Size: mass of the payload can be significant
- Offer:
- Primary structure
- Power
- Housekeeping interfaces
- Thermal control
- Primary stabilization in azimuth: few minutes of arc
- Fine stabilization: better than one second of arc
- Applications in astrophysics and atmospheric studies (occultation or nadir)

Polarized Instrument for Long-wavelength Observations of the Tenuous interstellar matter

$_$Pointed gondola

- Aluminium bars and nodes
- Total payload gondola mass: 1050 kg
- Use of a diurnal stellar sensor

〔PILOT instrument (IRAP, CEA, IAS)

- Telescope 0.9 m
- 2048 bolometers cooled at 0.3 Kelvin

CFlights

- First: September 2015, Timmins (Ontario Canada)
- Second Flight: April 2017, Alice Spring (Australia)
- Third Flight: August 2019, Timmins

One meter aperture telescope, near UV, with multi-object spectrograph. 2.4 T. Study of the galactic environment

CARMEN Generic Gondola for ZPB

A service oriented architecture

- Payload gondola: up to 1100 kg
- Payload : up to 700 kg
- > 4,5 m3 available
- Thermal cover
- Power supply: up to 1 kW
- On board computer
- 3D pointing: < 1 arcsec

SPB: The STRATEOLE 2 project

Study of the equatorial lower stratosphere by flotillas of SPB

Led by CNES and French CNRS (LMD, LATMOS, GSMA), with a participation of US labs and NSF 8 institutes, 12 payloads; 3 campaigns from the Seychelles, 2019, 2021, 2024

Instrument	Purpose	Institute	Meas. Type	Altitudes	Meas. Rate	Geophysical quantities
GPS (Euros)	Wind (through possition)	CNES	in-situ	fight leer	every 305	3D positions horizontal winds
TSEN	Air Pressure and Temperature	CNRS-MD	insitu	flight level	every 30 s ever 1 s	$\begin{gathered} \text { temperature } \\ \text { pressure } \end{gathered}$
SAWFPHY	Water Vapor (through dew-point)	CNRS-MD	in-situ	fright level	$\text { every } 10-15 \mathrm{~min}$ (only night)	H2O mixing ratio
B-Bop	Ozone Photometer	NRS-MD	inssitu	flight level	ereer $10-15 \mathrm{~min}$	03 mixino ratio
LOAC	Opicical Paticle Counter	CNRS-LPC2E	in.situ	fight leel		size resolved paticle\#
pico-SDLA	Water Vapor and Carbon Dioxide (through light absorption)	CNRS-GSMA	insil	fight eevel		H 2 O mixing ratio CO2 mixing ratio
FLOATS	Local Profiler Air Temperature	LASP (USA)	in.situ	$\begin{array}{\|c\|} \hline \text { flight level down to } \\ 2-3 \mathrm{~km} \text { below } \end{array}$	2 profile ever $5-10$ min	temperat
LOPC	LASP Optical Paricicle Courter	LASP (USA)	insitu	fight level	evey 8 min	size resolved (8 bins) aerosol number concentration
RACHuTS	Lcalal Profiler Air Temp., Water Vap., Cloud Detection	LASP (USA) \& NOAA (USA)	inssiu	$\underset{\substack{\text { fight } \\ 2 \mathrm{~km} \text { bele bolow }}}{\text { to }}$	$3 / 4$ profles per right	
BeCOOL	Nadir Cloud detection trough Long Distance Lidar	LATMOS / CNR France / Italy	remote (nadir)	$\begin{array}{\|c\|} \hline \text { fight level down to } \\ -5 \mathrm{~km} \text { below } \end{array}$	profile everer 5-1	attenuated backscatter
ROC	Atm. Sounding through GPS Occultation High accuracy GPS position	$\begin{array}{\|c} \text { Scipps Oceanography } \\ \text { (USA) } \end{array}$	remote (limb)	$\begin{array}{\|l\|} \hline \text { fight level down to } \\ z-4 \mathrm{~km} \\ \hline \end{array}$	tens of profles per day	high-precision 3 D positions temperature
BOL-DAIR	Up-Welling Infared flux	CNRS-LATMOS	in-situ	fight eevel	erey 1 min	total upwelling flux total long wave flux

STRATEOLE 2: Trajectories

Up to 90 days flight duration
Overflying up to 96 countries

Operations

CNES balloons launch sites

K Recurrent Stratospheric launches
K Occasional Stratospheric launches

+ No recovery

There would be many other things to say about balloons...

-Two Russian balloons flew over the planet Venus over 45 hours each in 1985 at an altitude of 50 km
-CNES, in collaboration with the Russians, carried out a Martian aerostat project in the early 1990s
-A hot air balloon was designed to go on Titan

-CNES balloon expertise is regularly requested and even involved in the development of new stratospheric vehicles
-Innovation in progress: A steerable balloon

cnes . . .

To conclude

-If Archimedes' principle is simple, complexity with balloons can happen quick!
-Thermal:
Thermal studies on envelope and gas are very complex
Thermal studies on gondolas are not simple
(The external environment is extremely variable in terms of atmospheric temperatures and in terms of radiation fluxes)
-The mechanics of flexible structures:
Mechanical calculations on the envelopes are very complicated.
-Pointing systems and stabilization:
Pointing a telescope with precision better than a second of arc from a real swing is not easy at all!
—The routing of a "steerable" balloon: A new challenge!
Use of meteo models and onboard measurements of the winds

Some References

https://ballons.cnes.fr/fr
https://fr-fr.facebook.com/stratospheric.balloons/
https://www.hemera-h2020.eu/

Book «Les Ballons au service de la Recherche» (Institut français d'histoire de l'Espace, 2011)

Edition Edite, 79 rue Amelot, 75011 Paris

END

Thank you for your attention

